作者单位
摘要
1 华中科技大学光学与电子信息学院, 湖北 武汉 430074
2 成都英飞睿技术有限公司, 四川 成都 610213
光轴的平行性校准在多传感器光电系统中起着重要的作用。为了使被动光学设备的光轴校准满足广泛适用的需求,提出一种基于干涉条纹的光轴平行性校准方法。在平行光管法的基础上建立基准光轴,对接收光学系统反射形成的牛顿环干涉条纹进行拟合,从而计算光轴间的夹角。利用搭建的校准系统平台对激光测距机的发射光轴和接收光轴进行光轴的实际校准。实验结果表明:接收光轴与基准光轴的平行性测量精度优于5″,能够较好地满足校准多传感器光电系统的应用需求,验证该方法的有效性。所提方法的可视化校准过程可以提高校准效率,具有操作简单、实用性强和测量精度高的优点。
测量 校准 光轴平行性 干涉条纹 图像处理 
光学学报
2020, 40(17): 1712005
Author Affiliations
Abstract
1 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
2 Northwestern Polytechnical University Ming De College, Xi’an 710124, China
3 e-mail: pengli@nwpu.edu.cn
4 e-mail: jlzhao@nwpu.edu.cn
Optical activity (OA) is the rotation of the polarization orientation of the linearly polarized light as it travels through certain materials that are of mirror asymmetry, including gases or solutions of chiral molecules such as sugars and proteins, as well as metamaterials. The necessary condition for achieving OA is the birefringence of two circular polarizations in material. Here, we propose a new kind of self-accelerated OA in free space, based on the intrinsic Gouy phase induced mode birefringence of two kinds of quasi-non-diffracting beams. We provide a detailed insight into this kind of self-accelerated OA by analyzing angular parameters, including angular direction, velocity, acceleration, and even the polarization transformation trajectory. As the Gouy phase exists for any wave, this kind of self-accelerated OA can be implemented in other waves beyond optics, from acoustic and elastic waves to matter waves.
Photonics Research
2020, 8(4): 04000475
作者单位
摘要
MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
orbital angular momentum polarization spin angular momentum Pancharatnam–Berry (PB) phase angular diffraction 
Frontiers of Optoelectronics
2019, 12(1): 0169–87
Author Affiliations
Abstract
MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710129, China
We propose an efficient and robust method to generate tunable vector beams by employing a single phase-type spatial light modulator (SLM). With this method, a linearly polarized Gaussian beam can be converted into a vector beam with arbitrarily controllable polarization state, phase, and amplitude. The energy loss during the conversion is greatly reduced and depends mainly on the reflectivity of the SLM. We experimentally demonstrate that conversion efficiency of about 47% is achieved by using an SLM with reflectivity of 62%. Several typical vector beams, including cylindrical vector beams, vector beams on higher order Poincaré spheres, and arbitrary vector beams attached with phases and with tunable amplitude, are generated and verified experimentally. This method is also expected to create high-power vector beams and play important roles in optical fabrication and light trapping.
Polarization Singular optics Spatial light modulators 
Photonics Research
2018, 6(4): 04000228
Author Affiliations
Abstract
1 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710129, China
2 Department of Public Education, Northwestern Polytechnical University Ming De College, Xi’an 710124, China
3 e-mail: pengli@nwpu.edu.cn
4 e-mail: jlzhao@nwpu.edu.cn
Polarization oscillating beams, namely, polarization standing waves, commonly formed by a pair of coherent counterpropagating light waves with orthogonal polarizations, oscillate their states of polarization periodically within a wavelength interval, offering conceptual and practical interests in light-matter interactions such as the nonreciprocal magnetoelectric effect, and impressive applications in optical imaging, sensing, and chirality detection. Here, we propose a new class of polarization oscillating beams that longitudinally vary states of polarization with spatial intervals within centimeters via the superposition of two copropagating optical frozen waves with preshaped longitudinal intensity profiles and transverse phase structures. The flexibility and manipulability are demonstrated by creating several polarization oscillating beams with different polarization structures. This work paves a new way to manipulate other waves and may be useful for applications of optical standing waves in optical manipulation, light guiding of atoms, polarization-sensitive sensing, etc.
Polarization Singular optics Laser beam shaping 
Photonics Research
2018, 6(7): 07000756

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!